Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice.

نویسندگان

  • J C Bruusgaard
  • K Liestøl
  • K Gundersen
چکیده

We have recently published a new technique for visualizing nuclei in living muscle fibers of intact animals, based on microinjection of labeled DNA into single myofibers, excluding satellite cells (Bruusgaard JC, Liestol K, Ekmark M, Kollstad K, and Gundersen K. J Physiol 551: 467-478, 2003). In the present study, we use this technique to study fiber segments of soleus and extensor digitorum longus (EDL) muscles from mice aged 2, 14, and 23 mo. As the animals maturing from 2 to 14 mo, they displayed an increase in size and number of nuclei. Soleus showed little change in nuclear domain size, whereas this increased by 88% in the EDL. For 14-mo-old animals, no significant correlation between fiber size and nuclear number was observed (R2=0.18, P=0.51) despite a fourfold variation in cytoplasmic volume. This suggests that size and nuclear number is uncoupled in middle-aged mice. When animals aged from 14 to 23 mo, EDL IIb, but not soleus, fibers atrophied by 41%. Both EDL and soleus displayed a reduction in number of nuclei: 20 and 16%, respectively. A positive correlation between number of nuclei and size was observed at 2 mo, and this reappeared in old mice. The atrophy in IIb fibers at old age was accompanied by a disturbance in the orderly positioning of nuclei that is so prominent in glycolytic fibers at younger age. In old animals, changes in nuclear shape and in the peri- and internuclear microtubule network were also observed. Thus changes in myonuclear number and distribution, perhaps related to alterations in the microtubular network, may underlie some of the adverse consequences of aging on skeletal muscle size and function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Mechanical Over-Loading on the Properties of Soleus Muscle Fibers, with or without Damage, in Wild Type and Mdx Mice

Effects of mechanical over-loading on the characteristics of regenerating or normal soleus muscle fibers were studied in dystrophin-deficient (mdx) and wild type (WT) mice. Damage was also induced in WT mice by injection of cardiotoxin (CTX) into soleus muscle. Over-loading was applied for 14 days to the left soleus muscle in mdx and intact and CTX-injected WT mouse muscles by ablation of the d...

متن کامل

Endothelial Vasodilator Angiotensin Receptors are Changing in Mice with Ageing

Background: The vascular function of Angiotensin II-type-2 receptors in adults is controversial. We sought their location and function in mouse aortic rings at young and old mice. Materials and Methods: Male C57Bl mice (aged 4 and 14 months) were killed by CO2. The descending thoracic aorta was cleaned and dissected into rings. Aortic rings were mounted in Krebs’ solution at 37 °C an...

متن کامل

Evaluation of Morphological Changes in Muscle Fibers and Neuronal Terminals of Motor Neurons in Male Rats from Childhood to Old Age

Introduction: The aim of this study was to investigate the effect of time and age on morphological changes in male rats. Methods: For conducting this study, 15 male Wistar rats in three age groups of 2 weeks (150-100 g), 6 weeks (250-220 g) and 96 weeks (320-280 g) were kept in Pasargad Tissue and Gene Laboratory in Tehran City for six weeks and 48 hours later they were dissected and the soleu...

متن کامل

Ursolic acid induces myoglobin expression and skeletal muscle remodeling in mice

Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...

متن کامل

Evaluation of Embryos Derived from in vitro Fertilized Oocytes Reconstructed by Meiosis-II Chromosome Transplantation from Aged Mice to Ooplasms of Young Mice

Background To assess embryos derived by the transfer of meiosis-II chromosomes (M-II-t) from aged mice oocytes into ooplasms from younger mice to overcome the problem of age-related decline in female fertility. MaterialsAndMethods The developmental capacity karyotype and ultrastructure of reconstructed oocytes derived from meiosis-II chromosome transplantation from aged mice into the ooplasms o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2006